Understanding Python super()

The reason we use super is so that child classes that may be using cooperative multiple inheritance will call the correct next parent class function in the Method Resolution Order (MRO).

In Python 3, we can call it like this:

class ChildB(Base):
    def __init__(self):
        super().__init__() 

In Python 2, we are required to use it like this:

        super(ChildB, self).__init__()

Without super, you are limited in your ability to use multiple inheritance:

        Base.__init__(self) # Avoid this.

I further explain below.

"What difference is there actually in this code?:"

class ChildA(Base):
    def __init__(self):
        Base.__init__(self)

class ChildB(Base):
    def __init__(self):
        super(ChildB, self).__init__()
        # super().__init__() # you can call super like this in Python 3!

The primary difference in this code is that you get a layer of indirection in the __init__ with super, which uses the current class to determine the next class's __init__ to look up in the MRO.

I illustrate this difference in an answer at the canonical question, How to use 'super' in Python?, which demonstrates dependency injection and cooperative multiple inheritance.

If Python didn't have super

Here's code that's actually closely equivalent to super (how it's implemented in C, minus some checking and fallback behavior, and translated to Python):

class ChildB(Base):
    def __init__(self):
        mro = type(self).mro()             # Get the Method Resolution Order.
        check_next = mro.index(ChildB) + 1 # Start looking after *this* class.
        while check_next < len(mro):
            next_class = mro[check_next]
            if '__init__' in next_class.__dict__:
                next_class.__init__(self)
                break
            check_next += 1

Written a little more like native Python:

class ChildB(Base):
    def __init__(self):
        mro = type(self).mro()
        for next_class in mro[mro.index(ChildB) + 1:]: # slice to end
            if hasattr(next_class, '__init__'):
                next_class.__init__(self)
                break

If we didn't have the super object, we'd have to write this manual code everywhere (or recreate it!) to ensure that we call the proper next method in the Method Resolution Order!

How does super do this in Python 3 without being told explicitly which class and instance from the method it was called from?

It gets the calling stack frame, and finds the class (implicitly stored as a local free variable, __class__, making the calling function a closure over the class) and the first argument to that function, which should be the instance or class that informs it which Method Resolution Order (MRO) to use.

Since it requires that first argument for the MRO, using super with static methods is impossible.

Criticisms of other answers:

super() lets you avoid referring to the base class explicitly, which can be nice. . But the main advantage comes with multiple inheritance, where all sorts of fun stuff can happen. See the standard docs on super if you haven't already.

It's rather hand-wavey and doesn't tell us much, but the point of super is not to avoid writing the parent class. The point is to ensure that the next method in line in the method resolution order (MRO) is called. This becomes important in multiple inheritance.

I'll explain here.

class Base(object):
    def __init__(self):
        print("Base init'ed")

class ChildA(Base):
    def __init__(self):
        print("ChildA init'ed")
        Base.__init__(self)

class ChildB(Base):
    def __init__(self):
        print("ChildB init'ed")
        super(ChildB, self).__init__()

And let's create a dependency that we want to be called after the Child:

class UserDependency(Base):
    def __init__(self):
        print("UserDependency init'ed")
        super(UserDependency, self).__init__()

Now remember, ChildB uses super, ChildA does not:

class UserA(ChildA, UserDependency):
    def __init__(self):
        print("UserA init'ed")
        super(UserA, self).__init__()

class UserB(ChildB, UserDependency):
    def __init__(self):
        print("UserB init'ed")
        super(UserB, self).__init__()

And UserA does not call the UserDependency method:

>>> UserA()
UserA init'ed
ChildA init'ed
Base init'ed
<__main__.UserA object at 0x0000000003403BA8>

But UserB, because ChildB uses super, does!:

>>> UserB()
UserB init'ed
ChildB init'ed
UserDependency init'ed
Base init'ed
<__main__.UserB object at 0x0000000003403438>

Last updated