The Truth of Sisyphus
  • Introduction
  • Deep Learning
    • Basics
      • Hinge Loss
      • Regularizations
      • Linear Classification
      • Multi-Class and Cross Entropy Loss
      • Batch Norm and other Normalizations
      • Optimization
      • Optimization Functions
      • Convolution im2col
      • Activation Functions
      • Derivatives
        • Derivatives of Softmax
        • A Smooth (differentiable) Max Function
      • Model Ensemble
      • Layers Python Implementation
    • Classification
      • Mobile friendly networks
      • Non-local Neural Networks
      • Squeeze-and-Excitation Networks
      • Further Attention Utilization -- Efficience & Segmentation
      • Group Norm
      • ShuffleNet V2
    • Segmentation
      • Several Instance Segmentation
      • A Peek at Semantic Segmentation
      • Design Choices for Mobile Friendly Deep Learning Models, Semantic Segmentation
      • Efficient Video Object Segmentation via Network Modulation
      • BiSeNet
      • DeepLabV3+
    • Detection
      • CornerNet
      • IoU-Net
      • Why smooth L1 is popular in BBox Regression
      • MTCNN-NCNN
      • DetNet
      • SSD Illustration
    • RNN Related
      • GRU vs LSTM
      • BERT
    • Reinforcement Learning
      • AutoML in Practice Review
      • DRL for optimal execution of profolio transaction
    • Multi-task
      • Multi-task Overview
      • What are the tricks in Multi-Task network design?
    • Neural Network Interpretation
      • Neuron Visualization
    • Deep Learning Frameworks
      • How does Caffe work
      • [Gluon] When to use (Hybrid)Sequential and (Hybrid)Block
      • Gluon Hybrid Intro
      • Gluon HybridBlocks Walk-Through
      • A quick tour of Torch internals
      • NCHW / NHWC in Pytorch
      • Static & Dynamic Computation Graph
    • Converting Between DL Frameworks
      • Things To Be Considered When Doing Model Converting
      • Caffe to TensorFlow
    • Computation Graph Optimization
      • Two ways of TensorRT to optimize Neural Network Computation Graph
      • Customized Caffe Memory Optimization
      • NCNN Memory Optimization
      • Symbolic Programs Advantages: More Efficient, Reuse Intermediate Memory, Operation Folding
    • Deep Learning Debug
      • Problems caused by dead ReLU
      • Loss jumps to 87.3365
      • Common Causes of NANs During Training
    • Deployment
      • Efficient Convolution Operation
      • Quantization
    • What I read recently
      • Know Google the Paper Way
      • ECCV 2018
      • Neural Machine Translation
      • Street View OCR Extraction System
      • Teaching Machines to Draw
      • Pixel to Graph
      • Burst Image Deblurring
      • Material for Masses
      • Learning to Separate Object Sounds by Watching Unlabeled Video
    • Papers / Posts to be read
    • Dummy thoughts
  • Machine Learning
    • Classification
    • Regression
    • Clustering
    • Dimension Reduction
    • Metrics
    • Regularization
    • Bayesian Example
    • Machine Learning System Design
    • Recommendation
    • Essentials of Machine Learning
    • Linear Regression
    • Logistic Regression
      • Logistic Function
    • Gaussian Discriminant Analysis
    • Naive Bayes
    • SVM
    • MLE vs MAP
    • Boosting
    • Frequent Questions
    • Conclusion of Machine Learning
  • Python notes
    • Python _ or __ underscores usage
    • Python Multiprocess and Threading Differences
    • Heapq vs. Q.PriorityQueue
    • Python decorator
    • Understanding Python super()
    • @ property
    • Python __all__
    • Is Python List a Linked List or Array
    • What is the "u" in u'Hello world'
    • Python "self"
    • Python object and class
    • Python Class' Instance method, Class method, and Static Methods Demystified
    • Python WTF
    • Python find first value index in a list: [list].index(val)
    • Sort tuples, and lambda usecase
    • Reverse order of range()
    • Python check list is empty
    • Python get ASCII value from character
    • An A-Z of useful Python tricks
    • Python nested function variable scope
    • Python reverse a list
    • Python priority queue -- heapq
  • C++ Notes
    • Templates
    • std::string (C++) and char* (or c-string "string" for C)
    • C++ printf and cout
    • Class Member Function
    • Inline
    • Scope Resolution Operator ::
    • Constructor
    • Destructor
    • Garbage Collection is Critical
    • C++ Question Lists
  • Operating System
    • Basics
    • Mutex & Semaphore
    • Ticket Selling System
    • OS and Memory
    • Sort implementation in STL
    • Compile, link, loading & run
    • How to understand Multithreading and Multiprocessing from the view of Operating System
  • Linux & Productivity
    • Jupyter Notebook on Remote Server
    • Nividia-smi monitoring
  • Leetcode Notes
    • Array
      • 11. Container With Most Water
      • 35. Search Insert Position
    • Linked List
      • Difference between Linked List and Array
      • Linked List Insert
      • Design of Linked List
      • Two Pointers
        • 141. Linked List Cycle
        • 142. Linked List Cycle II
        • 160. Intersection of two Linked List
        • 19. Remove N-th node from the end of linked list
      • 206. Reverse Linked List
      • 203. Remove Linked List Elements
      • 328. Odd Even Linked List
      • 234. Palindrome Linked List
      • 21. Merge Two Sorted Lists
      • 430. Flatten a Multilevel Doubly Linked List
      • 430. Flatten a Multilevel Doubly Linked List
      • 708. Insert into a Cyclic Sorted List
      • 138. Copy List with Random Pointer
      • 61. Rotate List
    • Binary Tree
      • 144. Binary Tree Preorder Traversal
      • 94. Binary Tree Iterative In-order Traverse
    • Binary Search Tree
      • 98. Validate Binary Search Tree
      • 285. Inorder Successor in BST
      • 173. Binary Search Tree Iterator
      • 700. Search in a Binary Search Tree
      • 450. Delete Node in a BST
      • 701. Insert into a Binary Search Tree
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a BST
      • Contain Duplicate III
      • Balanced BST
      • Convert Sorted Array to Binary Search Tree
    • Dynamic Programming
      • 198. House Robber
      • House Robber II
      • Unique Path
      • Unique Path II
      • Best time to buy and sell
      • Partition equal subset sum
      • Target Sum
      • Burst Ballons
    • DFS
      • Clone Graph
      • General Introduction
      • Array & String
      • Sliding Window
  • Quotes
    • Concert Violinist Joke
    • 船 Ship
    • What I cannot create, I do not understand
    • Set your course by the stars
    • To-do list
Powered by GitBook
On this page
  1. Deep Learning
  2. Basics

Multi-Class and Cross Entropy Loss

PreviousLinear ClassificationNextBatch Norm and other Normalizations

Last updated 6 years ago

Two basic functions:

  1. Logits -> Exponential Function -> Normalization -> Probability

  2. - P(true) * Log ( Probability ) measures how small the target probability, and the smaller the loss larger.

  3. Cross Entropy loss: if the right class is predicted as 1, then the loss would be 0; if the right class if predicted as 0 ( totally wrong ), then the loss would be infinity.

  4. At the first iteration, each class probability would be like 1/C, and the expected initial loss would be -log(1 / C), and it equals to - ( log (1) - log (C)), equals to log (C) - 0, equals to log (C). This is a good checking criterion.

  5. SVM Loss: The loss Li for any individual example, we will be going to perform a sum of all categories Y, except for the true category yi. So we will sum over all incorrect classes and compare the difference between the correct class and incorrect class. And if the correct class score is larger than the incorrect class score by a margin, the loss on this incorrect class would be zero; otherwise, the loss on this incorrect class would be . In one formulation, Li = max(Yj + 1 - Yi), for j in all classes && j != i.

  6. Difference between multi-class SVM loss: In multi-class SVM loss, it mainly measures how wrong the non-target classes ( wants the target class score to be larger than others by a margin, and if the target loss is already larger than by the margin, jiggling it won’t influence the final loss); While cross-entropy loss always forces the target score to be as near 1 as possible.

  7. Will the Cross Entropy Loss ever be the max (infinity)? No. Because that means the normalized logits of the correct class should be EXACTLY zero, and which means the exponential term, before normalization, should be zero too, and again which means the raw logits before exponential function should be negative infinity and computer doesn’t do that well to generate infinity output. So the Infinity loss is not expected.

For example, the 3-element vector [1.0, 2.0, 3.0] gets transformed into [0.09, 0.24, 0.67]. The order of elements by relative size is preserved, and they add up to 1.0. Let's tweak this vector slightly into: [1.0, 2.0, 5.0]. We get the output [0.02, 0.05, 0.93], which still preserves these properties. Note that as the last element is farther away from the first two, it's softmax value is dominating the overall slice of size 1.0 in the output. Intuitively, the softmax function is a "soft" version of the maximum function. Instead of just selecting one maximal element, softmax breaks the vector up into parts of a whole (1.0) with the maximal input element getting a proportionally larger chunk, but the other elements getting some of it as well

Yincorrect + 1 - Ycorrect
LogoThe Softmax function and its derivative - Eli Bendersky's website
LogoDifference Between Softmax Function and Sigmoid FunctionDataaspirant
log(x) exp(x)
What is Cross Entropy Loss
Differences