The Truth of Sisyphus
  • Introduction
  • Deep Learning
    • Basics
      • Hinge Loss
      • Regularizations
      • Linear Classification
      • Multi-Class and Cross Entropy Loss
      • Batch Norm and other Normalizations
      • Optimization
      • Optimization Functions
      • Convolution im2col
      • Activation Functions
      • Derivatives
        • Derivatives of Softmax
        • A Smooth (differentiable) Max Function
      • Model Ensemble
      • Layers Python Implementation
    • Classification
      • Mobile friendly networks
      • Non-local Neural Networks
      • Squeeze-and-Excitation Networks
      • Further Attention Utilization -- Efficience & Segmentation
      • Group Norm
      • ShuffleNet V2
    • Segmentation
      • Several Instance Segmentation
      • A Peek at Semantic Segmentation
      • Design Choices for Mobile Friendly Deep Learning Models, Semantic Segmentation
      • Efficient Video Object Segmentation via Network Modulation
      • BiSeNet
      • DeepLabV3+
    • Detection
      • CornerNet
      • IoU-Net
      • Why smooth L1 is popular in BBox Regression
      • MTCNN-NCNN
      • DetNet
      • SSD Illustration
    • RNN Related
      • GRU vs LSTM
      • BERT
    • Reinforcement Learning
      • AutoML in Practice Review
      • DRL for optimal execution of profolio transaction
    • Multi-task
      • Multi-task Overview
      • What are the tricks in Multi-Task network design?
    • Neural Network Interpretation
      • Neuron Visualization
    • Deep Learning Frameworks
      • How does Caffe work
      • [Gluon] When to use (Hybrid)Sequential and (Hybrid)Block
      • Gluon Hybrid Intro
      • Gluon HybridBlocks Walk-Through
      • A quick tour of Torch internals
      • NCHW / NHWC in Pytorch
      • Static & Dynamic Computation Graph
    • Converting Between DL Frameworks
      • Things To Be Considered When Doing Model Converting
      • Caffe to TensorFlow
    • Computation Graph Optimization
      • Two ways of TensorRT to optimize Neural Network Computation Graph
      • Customized Caffe Memory Optimization
      • NCNN Memory Optimization
      • Symbolic Programs Advantages: More Efficient, Reuse Intermediate Memory, Operation Folding
    • Deep Learning Debug
      • Problems caused by dead ReLU
      • Loss jumps to 87.3365
      • Common Causes of NANs During Training
    • Deployment
      • Efficient Convolution Operation
      • Quantization
    • What I read recently
      • Know Google the Paper Way
      • ECCV 2018
      • Neural Machine Translation
      • Street View OCR Extraction System
      • Teaching Machines to Draw
      • Pixel to Graph
      • Burst Image Deblurring
      • Material for Masses
      • Learning to Separate Object Sounds by Watching Unlabeled Video
    • Papers / Posts to be read
    • Dummy thoughts
  • Machine Learning
    • Classification
    • Regression
    • Clustering
    • Dimension Reduction
    • Metrics
    • Regularization
    • Bayesian Example
    • Machine Learning System Design
    • Recommendation
    • Essentials of Machine Learning
    • Linear Regression
    • Logistic Regression
      • Logistic Function
    • Gaussian Discriminant Analysis
    • Naive Bayes
    • SVM
    • MLE vs MAP
    • Boosting
    • Frequent Questions
    • Conclusion of Machine Learning
  • Python notes
    • Python _ or __ underscores usage
    • Python Multiprocess and Threading Differences
    • Heapq vs. Q.PriorityQueue
    • Python decorator
    • Understanding Python super()
    • @ property
    • Python __all__
    • Is Python List a Linked List or Array
    • What is the "u" in u'Hello world'
    • Python "self"
    • Python object and class
    • Python Class' Instance method, Class method, and Static Methods Demystified
    • Python WTF
    • Python find first value index in a list: [list].index(val)
    • Sort tuples, and lambda usecase
    • Reverse order of range()
    • Python check list is empty
    • Python get ASCII value from character
    • An A-Z of useful Python tricks
    • Python nested function variable scope
    • Python reverse a list
    • Python priority queue -- heapq
  • C++ Notes
    • Templates
    • std::string (C++) and char* (or c-string "string" for C)
    • C++ printf and cout
    • Class Member Function
    • Inline
    • Scope Resolution Operator ::
    • Constructor
    • Destructor
    • Garbage Collection is Critical
    • C++ Question Lists
  • Operating System
    • Basics
    • Mutex & Semaphore
    • Ticket Selling System
    • OS and Memory
    • Sort implementation in STL
    • Compile, link, loading & run
    • How to understand Multithreading and Multiprocessing from the view of Operating System
  • Linux & Productivity
    • Jupyter Notebook on Remote Server
    • Nividia-smi monitoring
  • Leetcode Notes
    • Array
      • 11. Container With Most Water
      • 35. Search Insert Position
    • Linked List
      • Difference between Linked List and Array
      • Linked List Insert
      • Design of Linked List
      • Two Pointers
        • 141. Linked List Cycle
        • 142. Linked List Cycle II
        • 160. Intersection of two Linked List
        • 19. Remove N-th node from the end of linked list
      • 206. Reverse Linked List
      • 203. Remove Linked List Elements
      • 328. Odd Even Linked List
      • 234. Palindrome Linked List
      • 21. Merge Two Sorted Lists
      • 430. Flatten a Multilevel Doubly Linked List
      • 430. Flatten a Multilevel Doubly Linked List
      • 708. Insert into a Cyclic Sorted List
      • 138. Copy List with Random Pointer
      • 61. Rotate List
    • Binary Tree
      • 144. Binary Tree Preorder Traversal
      • 94. Binary Tree Iterative In-order Traverse
    • Binary Search Tree
      • 98. Validate Binary Search Tree
      • 285. Inorder Successor in BST
      • 173. Binary Search Tree Iterator
      • 700. Search in a Binary Search Tree
      • 450. Delete Node in a BST
      • 701. Insert into a Binary Search Tree
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a BST
      • Contain Duplicate III
      • Balanced BST
      • Convert Sorted Array to Binary Search Tree
    • Dynamic Programming
      • 198. House Robber
      • House Robber II
      • Unique Path
      • Unique Path II
      • Best time to buy and sell
      • Partition equal subset sum
      • Target Sum
      • Burst Ballons
    • DFS
      • Clone Graph
      • General Introduction
      • Array & String
      • Sliding Window
  • Quotes
    • Concert Violinist Joke
    • 船 Ship
    • What I cannot create, I do not understand
    • Set your course by the stars
    • To-do list
Powered by GitBook
On this page
  1. Leetcode Notes
  2. Array

11. Container With Most Water

Medium

Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

We start by computing the volume at (1,6), denoted by o. Now if the left line is shorter than the right line, then all the elements left to (1,6) on the first row have smaller volume, so we don't need to compute those cases (crossed by ---).

  1 2 3 4 5 6
1 x ------- o
2 x x
3 x x x 
4 x x x x
5 x x x x x
6 x x x x x x

Next we move the left line and compute (2,6). Now if the right line is shorter, all cases below (2,6) are eliminated.

  1 2 3 4 5 6
1 x ------- o
2 x x       o
3 x x x     |
4 x x x x   |
5 x x x x x |
6 x x x x x x

And no matter how this o path goes, we end up only need to find the max value on this path, which contains n-1 cases.

  1 2 3 4 5 6
1 x ------- o
2 x x - o o o
3 x x x o | |
4 x x x x | |
5 x x x x x |
6 x x x x x x

Hope this helps. I feel more comfortable seeing things this way.

遇到没思路的问题,先举例、画图并抽象为一个数学操作。

ai 与 aj 分别为 container 的两头,小的一边决定 container 的高度,j - i 决定 container 的宽度。

先以最简单的只考虑移动一步为标准,当小的一端向内移动时,宽度一定会变小,高度可能变小也可能变大,因此面积不确定,不能直接排除。

当大的一端向内移动时,宽度一定会变小,高度有两种情况:若移动后的边比移动前小的那条边小,高度变小;若移动后的边比移动前小的那条边大,高度不变。说明大的一端向内移动面积一定会变小 ( W' < W; H' <= H)。

因此寻找最大 container 时,所有大边向内单向移动的情况均可 不计算面积 直接跳过,只计算下一个小边内缩一位的 area 值并 compare MAX。

九章 hint:任取两个a[i]、a[j] 使得 min(a[i], a[j]) * abs(i - j)最大化 用两个指针从两侧向中间扫描,每次移动数值较小的指针

class Solution(object):
    def maxArea(self, height):
        left, right = 0, len(height) - 1
        max_area = 0
        while left < right:
            if height[left] < height[right]:
                area = height[left] * (right - left)
                left += 1
            else:
                area = height[right] * (right - left)
                right -= 1
            max_area = max(max_area, area)
        return max_area
PreviousArrayNext35. Search Insert Position

Last updated 6 years ago