NCNN Memory Optimization
PreviousCustomized Caffe Memory OptimizationNextSymbolic Programs Advantages: More Efficient, Reuse Intermediate Memory, Operation Folding
Last updated
Last updated
ncnn的blob最初直接使用opencv的cv::Mat,后发现blob最多只支持三维,因此实现了类似的Mat Mat的data每个通道内存16字节对齐,并且有原子的引用计数,a=b不复制数据,超级快 Mat支持直接引用外部的内存块,不复制数据,加快模型加载和输入输出
举个例子:split layer 将一个blob复制成n个,ncnn中实现为单纯的增加引用计数,没有任何数据复制
ncnn的net在解决分支依赖时是自上而下深度优先的,因此当网络有多个分支时,运算只会在需要结果的那个分支中进行,节约时间 当多个分支有重合部分时,运算其中一个分支后会自动保留其余分支所需的中间结果,隐含共享,以便运算其余分支时利用
举个例子:某网络结构为 A -> B -> C1 + C2,向ncnn索要C1结果时,运算过程是 A -> B -> C1,同时B结果引用计数加1自动保留,后面还需要C2结果时,只运算C2就足够了
每个layer都会产生blob,除了最后的结果和多分支中间结果,大部分blob都不值得保留,开启轻模式可以在运算后自动回收,省下内存
举个例子:某网络结构为 A -> B -> C,在轻模式下,向ncnn索要C结果时,A结果会在运算B时自动回收,而B结果会在运算C时自动回收,最后只保留C结果,后面再需要C结果会直接获得,满足绝大部分深度网络的使用方式