The Truth of Sisyphus
  • Introduction
  • Deep Learning
    • Basics
      • Hinge Loss
      • Regularizations
      • Linear Classification
      • Multi-Class and Cross Entropy Loss
      • Batch Norm and other Normalizations
      • Optimization
      • Optimization Functions
      • Convolution im2col
      • Activation Functions
      • Derivatives
        • Derivatives of Softmax
        • A Smooth (differentiable) Max Function
      • Model Ensemble
      • Layers Python Implementation
    • Classification
      • Mobile friendly networks
      • Non-local Neural Networks
      • Squeeze-and-Excitation Networks
      • Further Attention Utilization -- Efficience & Segmentation
      • Group Norm
      • ShuffleNet V2
    • Segmentation
      • Several Instance Segmentation
      • A Peek at Semantic Segmentation
      • Design Choices for Mobile Friendly Deep Learning Models, Semantic Segmentation
      • Efficient Video Object Segmentation via Network Modulation
      • BiSeNet
      • DeepLabV3+
    • Detection
      • CornerNet
      • IoU-Net
      • Why smooth L1 is popular in BBox Regression
      • MTCNN-NCNN
      • DetNet
      • SSD Illustration
    • RNN Related
      • GRU vs LSTM
      • BERT
    • Reinforcement Learning
      • AutoML in Practice Review
      • DRL for optimal execution of profolio transaction
    • Multi-task
      • Multi-task Overview
      • What are the tricks in Multi-Task network design?
    • Neural Network Interpretation
      • Neuron Visualization
    • Deep Learning Frameworks
      • How does Caffe work
      • [Gluon] When to use (Hybrid)Sequential and (Hybrid)Block
      • Gluon Hybrid Intro
      • Gluon HybridBlocks Walk-Through
      • A quick tour of Torch internals
      • NCHW / NHWC in Pytorch
      • Static & Dynamic Computation Graph
    • Converting Between DL Frameworks
      • Things To Be Considered When Doing Model Converting
      • Caffe to TensorFlow
    • Computation Graph Optimization
      • Two ways of TensorRT to optimize Neural Network Computation Graph
      • Customized Caffe Memory Optimization
      • NCNN Memory Optimization
      • Symbolic Programs Advantages: More Efficient, Reuse Intermediate Memory, Operation Folding
    • Deep Learning Debug
      • Problems caused by dead ReLU
      • Loss jumps to 87.3365
      • Common Causes of NANs During Training
    • Deployment
      • Efficient Convolution Operation
      • Quantization
    • What I read recently
      • Know Google the Paper Way
      • ECCV 2018
      • Neural Machine Translation
      • Street View OCR Extraction System
      • Teaching Machines to Draw
      • Pixel to Graph
      • Burst Image Deblurring
      • Material for Masses
      • Learning to Separate Object Sounds by Watching Unlabeled Video
    • Papers / Posts to be read
    • Dummy thoughts
  • Machine Learning
    • Classification
    • Regression
    • Clustering
    • Dimension Reduction
    • Metrics
    • Regularization
    • Bayesian Example
    • Machine Learning System Design
    • Recommendation
    • Essentials of Machine Learning
    • Linear Regression
    • Logistic Regression
      • Logistic Function
    • Gaussian Discriminant Analysis
    • Naive Bayes
    • SVM
    • MLE vs MAP
    • Boosting
    • Frequent Questions
    • Conclusion of Machine Learning
  • Python notes
    • Python _ or __ underscores usage
    • Python Multiprocess and Threading Differences
    • Heapq vs. Q.PriorityQueue
    • Python decorator
    • Understanding Python super()
    • @ property
    • Python __all__
    • Is Python List a Linked List or Array
    • What is the "u" in u'Hello world'
    • Python "self"
    • Python object and class
    • Python Class' Instance method, Class method, and Static Methods Demystified
    • Python WTF
    • Python find first value index in a list: [list].index(val)
    • Sort tuples, and lambda usecase
    • Reverse order of range()
    • Python check list is empty
    • Python get ASCII value from character
    • An A-Z of useful Python tricks
    • Python nested function variable scope
    • Python reverse a list
    • Python priority queue -- heapq
  • C++ Notes
    • Templates
    • std::string (C++) and char* (or c-string "string" for C)
    • C++ printf and cout
    • Class Member Function
    • Inline
    • Scope Resolution Operator ::
    • Constructor
    • Destructor
    • Garbage Collection is Critical
    • C++ Question Lists
  • Operating System
    • Basics
    • Mutex & Semaphore
    • Ticket Selling System
    • OS and Memory
    • Sort implementation in STL
    • Compile, link, loading & run
    • How to understand Multithreading and Multiprocessing from the view of Operating System
  • Linux & Productivity
    • Jupyter Notebook on Remote Server
    • Nividia-smi monitoring
  • Leetcode Notes
    • Array
      • 11. Container With Most Water
      • 35. Search Insert Position
    • Linked List
      • Difference between Linked List and Array
      • Linked List Insert
      • Design of Linked List
      • Two Pointers
        • 141. Linked List Cycle
        • 142. Linked List Cycle II
        • 160. Intersection of two Linked List
        • 19. Remove N-th node from the end of linked list
      • 206. Reverse Linked List
      • 203. Remove Linked List Elements
      • 328. Odd Even Linked List
      • 234. Palindrome Linked List
      • 21. Merge Two Sorted Lists
      • 430. Flatten a Multilevel Doubly Linked List
      • 430. Flatten a Multilevel Doubly Linked List
      • 708. Insert into a Cyclic Sorted List
      • 138. Copy List with Random Pointer
      • 61. Rotate List
    • Binary Tree
      • 144. Binary Tree Preorder Traversal
      • 94. Binary Tree Iterative In-order Traverse
    • Binary Search Tree
      • 98. Validate Binary Search Tree
      • 285. Inorder Successor in BST
      • 173. Binary Search Tree Iterator
      • 700. Search in a Binary Search Tree
      • 450. Delete Node in a BST
      • 701. Insert into a Binary Search Tree
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a BST
      • Contain Duplicate III
      • Balanced BST
      • Convert Sorted Array to Binary Search Tree
    • Dynamic Programming
      • 198. House Robber
      • House Robber II
      • Unique Path
      • Unique Path II
      • Best time to buy and sell
      • Partition equal subset sum
      • Target Sum
      • Burst Ballons
    • DFS
      • Clone Graph
      • General Introduction
      • Array & String
      • Sliding Window
  • Quotes
    • Concert Violinist Joke
    • 船 Ship
    • What I cannot create, I do not understand
    • Set your course by the stars
    • To-do list
Powered by GitBook
On this page
  • What if we just use linear regression on discrete classes?
  • Linear Regression vs Logistic Regression output value range:
  • Logistic Function
  • Not use least square cost function since it would be non-convex
  • Two class cross entropy loss
  • Multi-Class one vs all
  • Multinomial Logistic Regression - SoftMax
  1. Machine Learning

Logistic Regression

PreviousLinear RegressionNextLogistic Function

Last updated 6 years ago

It is a classification algorithm used to estimate discrete values ( binary values like 0/1, yes/no, true/false ) based on given set of independent variable(s). In simple words, it predicts the probability of occurrence of an event by fitting data to a logit function.

Hence, logistic regression is also known as logit regression. Since, it predicts the probability, its output values lies between 0 and 1 (as expected).

Let’s say your friend gives you a puzzle to solve. There are only 2 outcome scenarios – either you solve it or you don’t.Coming to the math, the log odds of the outcome is modeled as a linear combination of the predictor variables.

odds= p/ (1-p) = probability of event occurrence / probability of not 
\event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk

Above, p is the probability of presence of the characteristic of interest. It chooses parameters that maximize the likelihood of observing the sample values rather than that minimize the sum of squared errors (like in ordinary regression).

Now, you may ask, why take a log? For the sake of simplicity, let’s just say that this is one of the best mathematical way to replicate a step function.

What if we just use linear regression on discrete classes?

Pink: a workable case

Blue: a problematic case

Linear Regression vs Logistic Regression output value range:

Logistic Function

where

  • x0 = the x-value of the sigmoid's midpoint,

  • L = the curve's maximum value, and

  • k = the steepness of the curve.

Not use least square cost function since it would be non-convex

Two class cross entropy loss

h(x) is a binary class logistic function and the output of two classes are already normalized.

Multi-Class one vs all

Multinomial Logistic Regression - SoftMax

A logistic function or logistic curve is a common "S" shape (), with equation:

e = the base (also known as ),

sigmoid curve
natural logarithm
Euler's number
What is Cross Entropy Loss
Differences
{\displaystyle f(x)={\frac {L}{1+e^{-k(x-x_{0})}}}}