The Truth of Sisyphus
  • Introduction
  • Deep Learning
    • Basics
      • Hinge Loss
      • Regularizations
      • Linear Classification
      • Multi-Class and Cross Entropy Loss
      • Batch Norm and other Normalizations
      • Optimization
      • Optimization Functions
      • Convolution im2col
      • Activation Functions
      • Derivatives
        • Derivatives of Softmax
        • A Smooth (differentiable) Max Function
      • Model Ensemble
      • Layers Python Implementation
    • Classification
      • Mobile friendly networks
      • Non-local Neural Networks
      • Squeeze-and-Excitation Networks
      • Further Attention Utilization -- Efficience & Segmentation
      • Group Norm
      • ShuffleNet V2
    • Segmentation
      • Several Instance Segmentation
      • A Peek at Semantic Segmentation
      • Design Choices for Mobile Friendly Deep Learning Models, Semantic Segmentation
      • Efficient Video Object Segmentation via Network Modulation
      • BiSeNet
      • DeepLabV3+
    • Detection
      • CornerNet
      • IoU-Net
      • Why smooth L1 is popular in BBox Regression
      • MTCNN-NCNN
      • DetNet
      • SSD Illustration
    • RNN Related
      • GRU vs LSTM
      • BERT
    • Reinforcement Learning
      • AutoML in Practice Review
      • DRL for optimal execution of profolio transaction
    • Multi-task
      • Multi-task Overview
      • What are the tricks in Multi-Task network design?
    • Neural Network Interpretation
      • Neuron Visualization
    • Deep Learning Frameworks
      • How does Caffe work
      • [Gluon] When to use (Hybrid)Sequential and (Hybrid)Block
      • Gluon Hybrid Intro
      • Gluon HybridBlocks Walk-Through
      • A quick tour of Torch internals
      • NCHW / NHWC in Pytorch
      • Static & Dynamic Computation Graph
    • Converting Between DL Frameworks
      • Things To Be Considered When Doing Model Converting
      • Caffe to TensorFlow
    • Computation Graph Optimization
      • Two ways of TensorRT to optimize Neural Network Computation Graph
      • Customized Caffe Memory Optimization
      • NCNN Memory Optimization
      • Symbolic Programs Advantages: More Efficient, Reuse Intermediate Memory, Operation Folding
    • Deep Learning Debug
      • Problems caused by dead ReLU
      • Loss jumps to 87.3365
      • Common Causes of NANs During Training
    • Deployment
      • Efficient Convolution Operation
      • Quantization
    • What I read recently
      • Know Google the Paper Way
      • ECCV 2018
      • Neural Machine Translation
      • Street View OCR Extraction System
      • Teaching Machines to Draw
      • Pixel to Graph
      • Burst Image Deblurring
      • Material for Masses
      • Learning to Separate Object Sounds by Watching Unlabeled Video
    • Papers / Posts to be read
    • Dummy thoughts
  • Machine Learning
    • Classification
    • Regression
    • Clustering
    • Dimension Reduction
    • Metrics
    • Regularization
    • Bayesian Example
    • Machine Learning System Design
    • Recommendation
    • Essentials of Machine Learning
    • Linear Regression
    • Logistic Regression
      • Logistic Function
    • Gaussian Discriminant Analysis
    • Naive Bayes
    • SVM
    • MLE vs MAP
    • Boosting
    • Frequent Questions
    • Conclusion of Machine Learning
  • Python notes
    • Python _ or __ underscores usage
    • Python Multiprocess and Threading Differences
    • Heapq vs. Q.PriorityQueue
    • Python decorator
    • Understanding Python super()
    • @ property
    • Python __all__
    • Is Python List a Linked List or Array
    • What is the "u" in u'Hello world'
    • Python "self"
    • Python object and class
    • Python Class' Instance method, Class method, and Static Methods Demystified
    • Python WTF
    • Python find first value index in a list: [list].index(val)
    • Sort tuples, and lambda usecase
    • Reverse order of range()
    • Python check list is empty
    • Python get ASCII value from character
    • An A-Z of useful Python tricks
    • Python nested function variable scope
    • Python reverse a list
    • Python priority queue -- heapq
  • C++ Notes
    • Templates
    • std::string (C++) and char* (or c-string "string" for C)
    • C++ printf and cout
    • Class Member Function
    • Inline
    • Scope Resolution Operator ::
    • Constructor
    • Destructor
    • Garbage Collection is Critical
    • C++ Question Lists
  • Operating System
    • Basics
    • Mutex & Semaphore
    • Ticket Selling System
    • OS and Memory
    • Sort implementation in STL
    • Compile, link, loading & run
    • How to understand Multithreading and Multiprocessing from the view of Operating System
  • Linux & Productivity
    • Jupyter Notebook on Remote Server
    • Nividia-smi monitoring
  • Leetcode Notes
    • Array
      • 11. Container With Most Water
      • 35. Search Insert Position
    • Linked List
      • Difference between Linked List and Array
      • Linked List Insert
      • Design of Linked List
      • Two Pointers
        • 141. Linked List Cycle
        • 142. Linked List Cycle II
        • 160. Intersection of two Linked List
        • 19. Remove N-th node from the end of linked list
      • 206. Reverse Linked List
      • 203. Remove Linked List Elements
      • 328. Odd Even Linked List
      • 234. Palindrome Linked List
      • 21. Merge Two Sorted Lists
      • 430. Flatten a Multilevel Doubly Linked List
      • 430. Flatten a Multilevel Doubly Linked List
      • 708. Insert into a Cyclic Sorted List
      • 138. Copy List with Random Pointer
      • 61. Rotate List
    • Binary Tree
      • 144. Binary Tree Preorder Traversal
      • 94. Binary Tree Iterative In-order Traverse
    • Binary Search Tree
      • 98. Validate Binary Search Tree
      • 285. Inorder Successor in BST
      • 173. Binary Search Tree Iterator
      • 700. Search in a Binary Search Tree
      • 450. Delete Node in a BST
      • 701. Insert into a Binary Search Tree
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a BST
      • Contain Duplicate III
      • Balanced BST
      • Convert Sorted Array to Binary Search Tree
    • Dynamic Programming
      • 198. House Robber
      • House Robber II
      • Unique Path
      • Unique Path II
      • Best time to buy and sell
      • Partition equal subset sum
      • Target Sum
      • Burst Ballons
    • DFS
      • Clone Graph
      • General Introduction
      • Array & String
      • Sliding Window
  • Quotes
    • Concert Violinist Joke
    • 船 Ship
    • What I cannot create, I do not understand
    • Set your course by the stars
    • To-do list
Powered by GitBook
On this page
  1. Python notes

@ property

https://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001386820062641f3bcc60a4b164f8d91df476445697b9e000

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

class Student(object):

    def get_score(self):
        return self._score

    def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

class Student(object):

    @property
    def score(self):
        return self._score

    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

class Student(object):

    @property
    def birth(self):
        return self._birth

    @birth.setter
    def birth(self, value):
        self._birth = value

    @property
    def age(self):
        return 2014 - self._birth

上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。

小结

@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。

PreviousUnderstanding Python super()NextPython __all__

Last updated 6 years ago