The Truth of Sisyphus
  • Introduction
  • Deep Learning
    • Basics
      • Hinge Loss
      • Regularizations
      • Linear Classification
      • Multi-Class and Cross Entropy Loss
      • Batch Norm and other Normalizations
      • Optimization
      • Optimization Functions
      • Convolution im2col
      • Activation Functions
      • Derivatives
        • Derivatives of Softmax
        • A Smooth (differentiable) Max Function
      • Model Ensemble
      • Layers Python Implementation
    • Classification
      • Mobile friendly networks
      • Non-local Neural Networks
      • Squeeze-and-Excitation Networks
      • Further Attention Utilization -- Efficience & Segmentation
      • Group Norm
      • ShuffleNet V2
    • Segmentation
      • Several Instance Segmentation
      • A Peek at Semantic Segmentation
      • Design Choices for Mobile Friendly Deep Learning Models, Semantic Segmentation
      • Efficient Video Object Segmentation via Network Modulation
      • BiSeNet
      • DeepLabV3+
    • Detection
      • CornerNet
      • IoU-Net
      • Why smooth L1 is popular in BBox Regression
      • MTCNN-NCNN
      • DetNet
      • SSD Illustration
    • RNN Related
      • GRU vs LSTM
      • BERT
    • Reinforcement Learning
      • AutoML in Practice Review
      • DRL for optimal execution of profolio transaction
    • Multi-task
      • Multi-task Overview
      • What are the tricks in Multi-Task network design?
    • Neural Network Interpretation
      • Neuron Visualization
    • Deep Learning Frameworks
      • How does Caffe work
      • [Gluon] When to use (Hybrid)Sequential and (Hybrid)Block
      • Gluon Hybrid Intro
      • Gluon HybridBlocks Walk-Through
      • A quick tour of Torch internals
      • NCHW / NHWC in Pytorch
      • Static & Dynamic Computation Graph
    • Converting Between DL Frameworks
      • Things To Be Considered When Doing Model Converting
      • Caffe to TensorFlow
    • Computation Graph Optimization
      • Two ways of TensorRT to optimize Neural Network Computation Graph
      • Customized Caffe Memory Optimization
      • NCNN Memory Optimization
      • Symbolic Programs Advantages: More Efficient, Reuse Intermediate Memory, Operation Folding
    • Deep Learning Debug
      • Problems caused by dead ReLU
      • Loss jumps to 87.3365
      • Common Causes of NANs During Training
    • Deployment
      • Efficient Convolution Operation
      • Quantization
    • What I read recently
      • Know Google the Paper Way
      • ECCV 2018
      • Neural Machine Translation
      • Street View OCR Extraction System
      • Teaching Machines to Draw
      • Pixel to Graph
      • Burst Image Deblurring
      • Material for Masses
      • Learning to Separate Object Sounds by Watching Unlabeled Video
    • Papers / Posts to be read
    • Dummy thoughts
  • Machine Learning
    • Classification
    • Regression
    • Clustering
    • Dimension Reduction
    • Metrics
    • Regularization
    • Bayesian Example
    • Machine Learning System Design
    • Recommendation
    • Essentials of Machine Learning
    • Linear Regression
    • Logistic Regression
      • Logistic Function
    • Gaussian Discriminant Analysis
    • Naive Bayes
    • SVM
    • MLE vs MAP
    • Boosting
    • Frequent Questions
    • Conclusion of Machine Learning
  • Python notes
    • Python _ or __ underscores usage
    • Python Multiprocess and Threading Differences
    • Heapq vs. Q.PriorityQueue
    • Python decorator
    • Understanding Python super()
    • @ property
    • Python __all__
    • Is Python List a Linked List or Array
    • What is the "u" in u'Hello world'
    • Python "self"
    • Python object and class
    • Python Class' Instance method, Class method, and Static Methods Demystified
    • Python WTF
    • Python find first value index in a list: [list].index(val)
    • Sort tuples, and lambda usecase
    • Reverse order of range()
    • Python check list is empty
    • Python get ASCII value from character
    • An A-Z of useful Python tricks
    • Python nested function variable scope
    • Python reverse a list
    • Python priority queue -- heapq
  • C++ Notes
    • Templates
    • std::string (C++) and char* (or c-string "string" for C)
    • C++ printf and cout
    • Class Member Function
    • Inline
    • Scope Resolution Operator ::
    • Constructor
    • Destructor
    • Garbage Collection is Critical
    • C++ Question Lists
  • Operating System
    • Basics
    • Mutex & Semaphore
    • Ticket Selling System
    • OS and Memory
    • Sort implementation in STL
    • Compile, link, loading & run
    • How to understand Multithreading and Multiprocessing from the view of Operating System
  • Linux & Productivity
    • Jupyter Notebook on Remote Server
    • Nividia-smi monitoring
  • Leetcode Notes
    • Array
      • 11. Container With Most Water
      • 35. Search Insert Position
    • Linked List
      • Difference between Linked List and Array
      • Linked List Insert
      • Design of Linked List
      • Two Pointers
        • 141. Linked List Cycle
        • 142. Linked List Cycle II
        • 160. Intersection of two Linked List
        • 19. Remove N-th node from the end of linked list
      • 206. Reverse Linked List
      • 203. Remove Linked List Elements
      • 328. Odd Even Linked List
      • 234. Palindrome Linked List
      • 21. Merge Two Sorted Lists
      • 430. Flatten a Multilevel Doubly Linked List
      • 430. Flatten a Multilevel Doubly Linked List
      • 708. Insert into a Cyclic Sorted List
      • 138. Copy List with Random Pointer
      • 61. Rotate List
    • Binary Tree
      • 144. Binary Tree Preorder Traversal
      • 94. Binary Tree Iterative In-order Traverse
    • Binary Search Tree
      • 98. Validate Binary Search Tree
      • 285. Inorder Successor in BST
      • 173. Binary Search Tree Iterator
      • 700. Search in a Binary Search Tree
      • 450. Delete Node in a BST
      • 701. Insert into a Binary Search Tree
      • Kth Largest Element in a Stream
      • Lowest Common Ancestor of a BST
      • Contain Duplicate III
      • Balanced BST
      • Convert Sorted Array to Binary Search Tree
    • Dynamic Programming
      • 198. House Robber
      • House Robber II
      • Unique Path
      • Unique Path II
      • Best time to buy and sell
      • Partition equal subset sum
      • Target Sum
      • Burst Ballons
    • DFS
      • Clone Graph
      • General Introduction
      • Array & String
      • Sliding Window
  • Quotes
    • Concert Violinist Joke
    • 船 Ship
    • What I cannot create, I do not understand
    • Set your course by the stars
    • To-do list
Powered by GitBook
On this page
  1. Leetcode Notes
  2. Dynamic Programming

198. House Robber

Must take current house, no memory optimization

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        
        if len(nums) <= 2:
            return max(nums)
        
        dp = [0] * len(nums)
        # if len(nums) == 3: # either len(nums) == 3 or > 3, this dp[2] should be calculated.
        # dp[2] = max(nums[1], nums[0] + nums[2])  # 需要确定清楚 dp 的表示含义,既然我们定义 dp 为一定取当前 i 时的 max money,那么 dp[2] 只能为 nums[0] + nums[2]
        dp[0] = nums[0]
        dp[1] = nums[1]
        dp[2] = nums[0] + nums[2]
        
        for i in range(3, len(nums)):
            dp[i] = nums[i] + max(dp[i - 2], dp[i - 3])
            
        return max(dp[-1], dp[-2])

Must take current house, with memory optimization:

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        
        if len(nums) <= 2:
            return max(nums)
        
        # from collections import deque  # 用 deque 的话 dp[0], dp[1] 不好通过 index 获取,deque 只能先转换为 list 再用 index access,没个循环都做这个操作太费时
        # dp = deque()
        
        dp = [0] * 4
        dp[0] = nums[0]
        dp[1] = nums[1]
        dp[2] = nums[0] + nums[2]
        
        for i in range(3, len(nums)):
            # dp[i % 4] = nums[i] + max(dp[i % 4 - 2], dp[i % 4 - 3])
            dp[i % 4] = nums[i] + max(dp[(i + 4 - 2) % 4], dp[(i + 4 - 3) % 4])
            
        return max(dp[(len(nums) - 1) % 4], dp[(len(nums) - 1 + 4 - 1) % 4]) # 用节省空间的 memory efficient DP 方法会导致最终终止位置不在最后,需要通过 求余 来计算最终终止位置

Don't have to take current house, with memory optimization:

class Solution(object):
    def rob(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        
        if len(nums) <= 2:
            return max(nums)
        
        dp = [0] * 3
        dp[0] = nums[0]
        # dp[1] = nums[1] # 我特么是不是个智障,都换了 dp 规则了,初始化最开始两个的时候也要考虑清楚规则的变化/运用
        dp[1] = max(nums[0], nums[1])
        
        for i in range(2, len(nums)):
            dp[i % 3] = max(dp[(i + 3 - 1) % 3], nums[i] + dp[(i + 3 - 2) % 3])
            
        # return dp[-1] # 用节省空间的 memory efficient DP 方法会导致最终终止位置不在最后,需要通过 求余 来计算最终终止位置
        return dp[(len(nums) - 1) % 3]
PreviousDynamic ProgrammingNextHouse Robber II

Last updated 6 years ago